What’s living in the sand?

Jessie Lowry, Coker College

DSC01976

Visible microalgae seen on the surface of wet sand at Folly Beach.

Next time you go to the beach this summer, I want you to think about the sand that you are walking on. Did you know that there are tons of microscopic photosynthetic organisms, aka microalgae, that live on the surface of sand? Before this summer, I didn’t know about these organisms either. Here is a picture of visible microalgae on the surface of the sand. Look for this next time you’re at the beach!

Microalgae communities in sand are made up of single-celled eukaryotic algae and cyanobacteria living in the top several millimeters of the sand (Miller et al., 1996). These organisms play important roles in ecosystem productivity and food chain dynamics, as well as in sediment properties, such as erodibility (Miller et al., 1996).

IMG_8018

Dr. Craig Plante and Jessie Lowry collect samples of sediment from Folly Beach. Photo credit: Kristy Hill-Spanik.

I am studying these microalgal communities and what factors influence community structure. For example, does pH, salinity, nutrients, or grain size shape microalgal community structure? Or does geographic distance shape communities? To answer these questions, I am collecting samples from Kiawah Island, Folly Beach, Isle of Palms, and Pawley’s Island, SC. We are measuring environmental variables at each location, and using molecular tools to study microalgal community structure.

I am extracting the DNA from samples collected, amplifying specific regions from these samples using polymerase chain reaction (PCR), and then we will be getting these regions sequenced using Ion Torrent technology. We will then use QIIME to determine how similar these benthic microalgal communities are.

IMG_7918

Jessie Lowry preparing samples for PCR, or polymerase chain reaction, which is used to make millions of copies of a piece of DNA.

Diatoms, a group of microalgae, have been proposed as bioindicators of environmental health (Desrosiers et al., 2013). Bioindicators are really cool because instead of telling a snapshot of an environmental condition, such as pH, temperature, or amount of oxygen in an environment, biological indicators reflect those changes and can give an idea of how the ecosystem is being affected. This research will further our knowledge of what factors shape benthic microalgal communities, and give a better understanding of these organisms as a potential bioindicator. In addition, this research will add to knowledge about the distribution of microorganisms, which is also not fully understood.

Learn more:

http://web.vims.edu/bio/shallowwater/benthic_community/benthic_microalgae.html

http://www.aims.gov.au/docs/research/water-quality/runoff/bioindicators.html

References

Desrosiers, C., Leflaive, J., Eulin, A., Ten-Hage, L. (2013). Bioindicators in marine waters: benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecological Indicators, 32, 25-34.

Miller, D.C., Geider, R.J., MacIntyre, H.L. Microphytobethos: The ecological role of the “Secret Garden” of unvegetated, shallow-water marine habitats. Estuaries, 19(2A): 186-212.

Acknowledgements

Thank you so much to my mentors Dr. Craig Plante, and Kristy Hill-Spanik. This research is funded through the National Science Foundation and College of Charleston’s Grice Marine Lab.

DSC01972Unknown-4Unknown-3

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s