Meddling with Mysterious Macroalgae

Pressley Wilson, University of South Carolina Aiken

The problem: If you have ever been in the ocean, you have probably come across a piece of seaweed, which is a type of macroalgae. Macroalgae are simply algae that can be seen without a microscope. These organisms undergo photosynthesis, produce carbon, and can reduce the levels of phosphates and nitrates in water (Champagne et al. 2015).

Although algae are one of the most important parts of marine ecosystems, the algae microbiome (the bacteria that live in and around algae) is highly unknown and further research is needed to uncover this critical macroalgae information. Is there a relationship between bacteria and algal species? Is there a relationship between the algae’s physical features and the bacteria? Or is the microbiome the same throughout the algae, regardless of variation in species and physical features?

In order to answer these questions, I am conducting a research project this summer looking at the bacteria that are associated with intertidal macroalgae from One’ula Beach, Hawai’i.

Intertidal region of One’ula Beach, Hawaii

The five species below were chosen from the intertidal region of One’ula: Asparagopsis taxiformis (1), Avrainvillea sp (2), Halimeda discoidea (3), Padina sanctae-crucis (4), and Dictyota sandviscensis (5). These species were chosen because they range from red, brown, and green algae; have varying physical features; and all currently grow on the intertidal region of One’ula Beach.

Macroalgae from One’ula Beach, Hawaii (Photo credit: Dr. Heather Spalding)

Asparagopsis, Avrainvillea, and Dictyota are uncalcified, Halimeda is calcified, and Padina is lightly calcified. Asparagopsis has fluffy upright filaments, Avrainvillea and Padina have a fan-shaped thallus, Halimeda has flattened segments, and Dictyota has dichotomous branches. All species are native to One’ula Beach, Hawaii, except Avrainvillea which is an invasive species, meaning it is not native to the area. These species represent a diverse array of brown algae (Padina and Dictoyta), green algae (Avrainvillea and Halimeda) and one red alga (Asparagopsis).

This research will lead to a better understanding of algae, which could lead to a better understanding of all photosynthetic marine organisms. Furthermore, this research will be used as preliminary results for Dr. Heather Spalding’s work in the Northwestern Hawaiian Islands determining if there is a relationship between spatial patterns and the algae microbiome, beginning in August.


I would like to thank Dr. Heather Fullerton for her guidance and support with this project and Dr. Heather Spalding for her sample collection. This project is supported by the Fort Johnson REU Program, NSF DBI-1757899. 


Champagne P, Hall G, Liu X, Wallace J, Yin Z. 2015. Determination of Algae and Macrophyte Species Distribution in Three Wastewater Stabilization Ponds Using Metagenomics Analysis. MDPI – Water. 7(7): 3225-3242.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s