Grac Attack!

Aaron Baumgardner, The University of Akron

The only thing more pervasive than the constant thoughts of, conversations about, and stress from Gracilaria vermiculophylla in Dr. Erik Sotka’s lab is the invasion of this red alga that is occurring along the coasts of North America and Europe (Sotka, et al. 2013). After only a few short weeks in Charleston, I have seen how prevalent and successful this seaweed is. The success of G. vermiculophylla along the southeastern coasts of the United States is due in part to the established mutualism between it and the decorator worm Diapatra cuprea. This mutualism provides a secure site for the seaweed to grow (Kollars, Byers, and Sotka unpublished manuscript), but it does not explain the success of G. vermiculophylla to thrive in environmental conditions that differ from its native Japanese range.

G. vermiculophylla colonizes a mudflat in Charleston Harbor by clinging to tube-building decorator worms. Credit, Erik Sotka

G. vermiculophylla colonizes a mudflat in Charleston Harbor by clinging to tube-building decorator worms. Credit, Erik Sotka.

Researching G. vermiculophylla can help us understand how aquatic invasions occur. Do introduced populations evolve novel characteristics or do they simply benefit from the phenotypic plasticity of their source populations? To answer this question, it is necessary to test plasticity in response to varying environmental conditions on native and non-native populations (Huang, et al. 2015). Since G. vermiculophylla has spread outside its latitudinal range and into high salinity environments (Kollars, et al. 2015), I will be testing the plasticity of native and non-native G. vermiculophylla populations to a range of temperatures and salinities. Photosynthetic efficiency will be measured using a PAM fluorometer to provide a more objective way to quantify stress (Rasher and Hay 2010).

I would like to thank the College of Charleston for this internship opportunity, Dr. Erik Sotka for mentoring me on my project, and the National Science Foundation for funding REU programs.

CofClogo    nsf-logo


Huang, Q. Q., et al. (2015). Stress relief may promote the evolution of greater phenotypic plasticity in exotic invasive species: a hypothesis. Ecology and Evolution 5(6), 1169-1177.

Kollars, N. M., Byers, J. E.,  & Sotka, E. E. (unpublished manuscript). Invasive décor: a native decorator worms forms a novel mutualism with a non-native seaweed.

Kollars, N. M., et al. (2015, in review). Development and characterization of microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla. PeerJ.

Rasher, D. B., & Hay, M. E. (2010). Chemically rich seaweeds poison corals when not controlled by herbivores. PNAS 107(21), 9683-9688.

Sotka, E. E., et al. (2013). Detecting genetic adaptation during marine invasions. Grant proposal to the National Science Foundation.

New Philadelphia to Charleston

Aaron Baumgardner, The University of Akron

Coming from the landlocked small town of New Philadelphia in the Midwest, I feel like I’m dreaming when I realize I’m spending my summer researching in Charleston, SC. I’m thankful for the opportunity that my mentor, the College of Charleston, and the National Science Foundation has given me to learn and grow in my scientific ability.

However, I do not believe I would be where I am today if it weren’t for my Aunt Jane. She is the only member of my family with a background in science, and even though she is hundreds of miles away at UPenn, she is always an email or phone call away. She has always shown an interest in my academics and will always be there for any advice I may ask. She has helped me develop my professionalism and offered insight on which graduate schools are worth going to.   Because of her, I can finally realize it’s not a dream. It’s reality that I’m spending my summer in Charleston, SC. It’s because I’ve worked hard in school and reached out for opportunities for me to mature as scientist. And I owe her so much for pushing me to succeed.

Thank you Aunt Jane!

Benthic Microalgae Research – A day at the beach

Jessica Lowry, Coker College

Featured image

I’m Jessie Lowry, a rising senior Biology major at Coker College, which is located in the tiny, homy town of Hartsville, SC. I am really excited to be here in my hometown this summer with opportunity to do research through the College of Charleston REU at Ft. Johnson. My research project this summer that I am working with Dr. Craig Plante on is investigating what factors influence the communities of benthic microalgae, or photosynthetic microorganisms in sediment.

Before we begin researching what species of diatoms make up the benthic microalgal communities, we need to do some preliminary sampling to measure things like pH, salinity, temperature, grain size, and moisture, at the three local beaches where I will be sampling at.

I’m not sure what I had envisioned for doing research this summer, but what I did not expect was for it to be like a day at the beach! Yesterday, Dr. Craig Plante and I went to Isle of Palms and Folly Beach, and today we are going to Kiawah.

My mentor, Dr. Craig Plante carrying research supplies out to the water at Folly Beach, SC.

We took several samples of seawater and sediment at each beach and we will do tests back at the lab. Unfortunately, I will not be spending every day researching at the beach. It was really great to get some sand, salt, and sun during a day of research.

Samples of seawater and sediment from Isle of Palms and Folly Beach that we collected to measure pH, salinity, grain size, and moisture.

Samples of seawater and sediment from Isle of Palms and Folly Beach that we collected to measure pH, salinity, grain size, and moisture.

Also, the temperature was in the 90s, the water was slightly warmer than the air, and the sand at one point at Folly Beach was a scorching 120° F! Dipping our feet in the water definitely felt great.


This research is funded by the National Science Foundation Reseach Experience for Undergraduates program at College of Charleston’s Grice Marine Lab.