Small Steps to Save the Sea Turtles

Kelly Townsend, Elmhurst College

IMG_1416

Turtle trawl on the R/V Lady Lisa. Photograph authorized by NMFS Section 10(A)(1)(a) permit 19621.

The problem: Do you like sea turtles? As for me, I have fallen in love with these cute creatures who occupy parts of the ocean. Seeing them pop their heads up or glide through the water always amazes me, but many species are endangered. A lot of effort has gone into saving them since sea turtles play an important role in the marine ecosystem. The marine ecosystem makes up a part of our world that is deeply loved but also threatened. Sea turtles help marine ecosystems function by limiting the amount of seagrass beds and sponges through consumption (McClenachan et al., 2006). Therefore, sea turtles presence in the environmental community is key to ecosystem restoration where their numbers have dropped and seagrass disease has been able to spread and coral overgrowth has increased. In addition, sea turtles also play an important role in ecotourism. Places like Costa Rica, United States, and Australia use sea turtles as a source of income by promoting tourism in areas where they live or nest, offering turtle walks, and selling souvenirs (Campbell, 2003). Since sea turtles act as an important resource for humans, there has been much effort into rehabilitating injured sea turtles and researching them in order to determine better prognostic indicators and courses of treatment. Sea turtles are important to us environmentally and economically, so saving them from going extinct requires the most reliable research and data possible to make that happen

 

IMG_0287

Turtle nesting beach located in Tortuguero, Costa Rica.

RNA and plasma proteins are both potential indicators for overall organismal health, but they can degrade quickly if not properly stored. Plasma protein concentrations in sea turtles can help wildlife veterinarians diagnose a disease and create a proper treatment plan (Gicking et al., 2004). Therefore, measuring plasma proteins in archived samples can indicate when or if a . particular disease developed in sea turtles. In addition, RNA concentrations and quality are good indicators of general health. High ratios of RNA/DNA has shown indications of increased cellular protein synthesis along with increased growth potential which means the sea turtle is growing properly (Vieira et al., 2014). However, in order to use archived samples to accurately track health indicators such as plasma proteins and RNA, it is vital to know if storage conditions allowed degradation of these molecules.

IMG_1438

Whole blood tubes used for RNA analysis.

This study aims to investigate RNA and plasma protein stability at different temperature treatments over periods of time. Samples will be maintained in favorable conditions along with unfavorable conditions to analyze the difference between the qualities. By knowing what happens on a molecular level to blood when storage conditions go wrong, we hope to eliminate the use of low quality samples used in research. Freezers malfunction, people forget to put samples away, and blood may not be put in the proper place so the results of this study will become a reference to those researchers who experience these tragedies.

I would like to thank Dr. Jennifer Lynch, Jennifer Trevillian, and Jennifer Ness with the National Institute of Standards and Technology for being my supportive and awesome mentors. This project was made possible by the samples collected by Dr. Michael Arendt and the funding from the National Science Foundation (NSF DBI-1757899) supported by the Fort Johnson REU program.

References:

Campbell L. 2003. Contemporary culture, use, and conservation of sea turtles. In: Lutz PL, Musick JA, and Wyneken J (Eds). The biology of sea turtles, volume 2. Boca Raton, FL:   CRC Press.

Gicking JC, Foley AM, Harr KE, Raskin RE, Jacobson E. 2004. Plasma protein electrophoresis of the atlantic loggerhead sea turtle, Caretta caretta. Herpetological Medicine and Surgery 14:13-18.

McClenachan L, Jackson JBC, Newman MJH. 2006. Conservation implications of historic sea turtle nesting beach loss. Front Ecol Environ 4:290-296.

Vieira S, Martins S, Hawkes LA, Marco A, Teodosio MA. 2014. Biochemical indices and life traits of loggerhead turtles (Caretta caretta) from cape verde islands. PLoS ONE 9:e112181.

Advertisements

Our complicated relationship with chemicals

Nina Sarmiento, Binghamton University

Chemicals found all around us that have been altered, mimicked, and synthesized to be added to our products, are behind the success of our modern society. They have made our plastics strong, our crops prosperous, and our medicines effective. But I have always wondered about the toxicity of these chemicals.  When you look at their biological activity, a chemical might possess the potential to do harm, like interfere with biological processes. The safety of a potentially harmful chemical is based on exposure and dose. It is important to know if we are touching it, eating it, or breathing it in, and for what period of time. The study of evaluating the harmful effects of substances on exposed organisms is what toxicology is all about. They have such an important job because their findings influence what we know is safe and unsafe, for us and organisms all around us.

I learned early on from pursuing biology that we are exposed to many things we are unaware of. Not only are we exposed to potentially harmful chemicals, but we facilitate exposure to other living organisms that may more sensitive. Take dogs for simple example. The toxic dose of something like chocolate for humans is very high, whereas leaving a small amount of chocolate out for a dog to eat could easily kill it.  Rachel Carson is someone I greatly admire, whose work on the pesticide DDT also exemplifies this reality. Food crops were the target for DDT, but birds were indirectly ingesting it, explaining the decline in the Bald Eagle population.  She is one of the people that sparked my interest in ecotoxicology, looking at the effects of harmful substances on ecology, not just humans.

unnamedThis is an example of some of the questions ecotoxicologists ask when there is a potentially harmful substance found in the environment. Photo credit: globe.setac.org.

Here is a chemical product you may not suspect as a threat, sunscreen. In sunscreens, UV filters protect you from getting burned, but also can act as endocrine disruptors, altering hormones and growth (1). Sunscreens are only meant for human skin, however they end up in our lakes, rivers and oceans through swimming or through waste water treatment effluent (2). Unintentionally, many more organisms become exposed.

Toxic-Sunscreen

Photo credit: thesleuthjournal.com

In my project I will be using sea urchins as a model organism to study the effects sunscreens might be having on coral reefs.  I am learning how to preform toxicity tests on sea urchin sperm and embryos which involve an exposure period with sunscreen formulations and then evaluation of effects. I hope to investigate if the chemicals from sunscreens in the water can have negative impacts on coral reproduction.  My work can potentially help create understanding of how humans are contributing to coral reef decline, and influence others to take action to protect them.

image

This is a picture of sunscreen water accomodated fractions (WAFs) I am making. They are a mix of sunscreen and seawater and I will be exposing the sea urchin embryos to each solution!

IMG_5703

This is me in the lab with a microscope I use to look at sea urchin sperm and embryos! Photo by Bob Podolsky

My research is funded by the National Science Foundation and College of Charleston partnered with National Oceanic and Atmospheric Administration

noaaCofClogoUnknown-4

Works cited:

1 Krause M.,, Klit A., Jensen M., Soeborg T., Fredrickson H., Schlumpf M., Litchensteiger W., Skakkebaek N E., Drzewieck K T. 2012. Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. International journal of andrology. 35 424-436.

2Kyungho C., Kim  S. 2014. Occurances, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini review. Environment International. 70 143-157.

The real beauty of coral reefs

Nina Sarmiento, Binghamton University

The beauty of a coral reef is undeniable. Over four thousand species of fish, 800 species of coral, invertebrates, and large macro fauna coming together in one place is sure to create a thrilling visual experience. You might be surprised to learn that these remarkable places filled with twenty five percent of marine life, constitute less than one percent of the ocean floor.1 But you don’t have to be lucky enough to travel to a coral reef to fully appreciate its beauty. The real value of reefs comes from their unsuspecting roles in sustaining life as we know it.

photo cred: fmap.ca

photo cred: fmap.ca

Fish from approximately half of our global fisheries, at one point spent a part of their life in coral reefs.2 The unique habitat hard corals provide is perfect for spawning and juvenile life for many species, which may later end up in other parts of the ocean. Fishermen make their livelihood from these reefs, harvesting an average of fifteen tons of seafood annually per square kilometer.3

As for people living on our tropical coastlines, reefs play a crucial role in protecting life on land. It is in the beauty of the long braches of Copra palmata, among other corals, that dangerous storms and waves are softened. Corals roughness and their shallow locale dissipate wave energy, and we have a natural barrier that safeguards our homes.4

Acropora palmata – “Elkhorn coral” Photo cred: coral.aims.gov.au

Acropora palmata – “Elkhorn coral”
Photo cred: coral.aims.gov.au

The importance and intrigue of coral reefs has led to studying many of the organisms and interactions there, leading to new understandings of many aspects of organism biology and evolution. Additionally research has uncovered new medicine from extracting compounds unique species have, giving reefs an importance in future medical interests.

The paradox is that, of all the reasons why we appreciate coral reefs, it is we, the human species that are not having a good effect on them. In fact we are seeing reef decline in many parts of the world because of our actions.5

This summer I am delving into studying one of the possible reasons for this decline; a chemical threat to coral that may not be obvious at first, but could have significant implications on their ability to survive and reproduce.

Stay tuned to hear about my project and the amazing opportunity I have to be a part of the effort to preserve these beautiful communities.

References:

1 Spalding MD, Ravilious C, Green EP. 2001. United Nations Environment Programme, World Conservation Monitoring Centre. World Atlas of Coral Reefs. University California Press: Berkley. 416.

2 US Coral Reef Task force. 2000. The National Action Plan to Conserve Coral Reefs. Washington DC: US Environmental Protection Agency. 34.

3 Ceasr H. 1996. Economic Analysis of Indonesian Coral Reefs. Washington DC: The World Bank.

4 Lowe JR, Falter JL, Bandet MD, Pawlak G, Atkinson MJ, Momismith SG, Koseff JR. 2005. Spectral wave dissipation over a barrier reef. Journal of Geophysical research. 10: C04001.

5 Nystrom M, Folke C, Moberg F. 2015. Coral reef disturbance and resilience in a human-dominated environment.

Funding for my research comes from the National Science Foundation in partner with The College of Charleston and the National Oceanic and Atmospheric Administration

CofClogoUnknown-4noaa