Uncovering Seasonal Changes in the Algae Our Oceans Depend On

Emily Spiegel, Bryn Mawr College

As described in my previous posts, this study focused on a polar diatom, F. cylindrus.  Despite the harsh temperatures of its habitat, this diatom is awesomely productive. It can form blooms under sea ice so thick, it looks like grass! Marine organisms feed on these blooms, which contributes to productivity of the entire ecosystem.

Because the poles are situated at the ends of the Earth, they are subject to constant changes in light availability, from continuous light to continuous darkness. How are photosynthetic organisms like F. cylindrus able to adapt to this stressful change? Their ability to produce biomass is dependent on light levels: too much and these cells can be overwhelmed, too little and there may not be enough to balance against the costs of respiration.

I found that in the low light exposure of polar autumn (6h light: 18h darkness), F. cylindrus begins to reproduce sexually, instead of asexually. This was found through analysis of RNA expression, which is an indicator for how much a certain gene is being transcribed into proteins to do work within the cell. Sexual reproduction leaves behind a trace in the RNA, based on the particular genes involved. As opposed to the primary form of diatom reproduction (asexual), sexual reproduction conserves resources and produces fewer cells. So the population does not grow to the same extent as populations reproducing asexually, but it’s also able to survive in stressful and changing conditions better than asexual populations.

Interestingly, stress can also reduce the ability of F. cylindrus to remove carbon dioxide from the atmosphere, in a process known as carbon fixation. This shift could have major implications for how well the polar oceans remove CO2 from the atmosphere at different times of year. Could autumnal months in the poles show dramatically decreased carbon fixation rates? What would such a pattern mean for current global carbon models? Further research must be conducted at the poles themselves to determine whether this relationship exists in nature, and how it is affecting carbon flux within the polar oceans.

This research was conducted in the lab of Dr. Peter Lee from the College of Charleston at the Hollings Marine Laboratory in collaboration with the Medical University of South Carolina. Many thanks to all members of the lab, particularly Nicole Schanke, MSc.

Advertisements