Uncovering Seasonal Changes in the Algae Our Oceans Depend On

Emily Spiegel, Bryn Mawr College

As described in my previous posts, this study focused on a polar diatom, F. cylindrus.  Despite the harsh temperatures of its habitat, this diatom is awesomely productive. It can form blooms under sea ice so thick, it looks like grass! Marine organisms feed on these blooms, which contributes to productivity of the entire ecosystem.

Because the poles are situated at the ends of the Earth, they are subject to constant changes in light availability, from continuous light to continuous darkness. How are photosynthetic organisms like F. cylindrus able to adapt to this stressful change? Their ability to produce biomass is dependent on light levels: too much and these cells can be overwhelmed, too little and there may not be enough to balance against the costs of respiration.

I found that in the low light exposure of polar autumn (6h light: 18h darkness), F. cylindrus begins to reproduce sexually, instead of asexually. This was found through analysis of RNA expression, which is an indicator for how much a certain gene is being transcribed into proteins to do work within the cell. Sexual reproduction leaves behind a trace in the RNA, based on the particular genes involved. As opposed to the primary form of diatom reproduction (asexual), sexual reproduction conserves resources and produces fewer cells. So the population does not grow to the same extent as populations reproducing asexually, but it’s also able to survive in stressful and changing conditions better than asexual populations.

Interestingly, stress can also reduce the ability of F. cylindrus to remove carbon dioxide from the atmosphere, in a process known as carbon fixation. This shift could have major implications for how well the polar oceans remove CO2 from the atmosphere at different times of year. Could autumnal months in the poles show dramatically decreased carbon fixation rates? What would such a pattern mean for current global carbon models? Further research must be conducted at the poles themselves to determine whether this relationship exists in nature, and how it is affecting carbon flux within the polar oceans.

This research was conducted in the lab of Dr. Peter Lee from the College of Charleston at the Hollings Marine Laboratory in collaboration with the Medical University of South Carolina. Many thanks to all members of the lab, particularly Nicole Schanke, MSc.

Advertisements

The Problem with PFCs- Seeking Answers in Plasma

Kady Palmer, Eckerd College

Manatee_CR

I previously outlined the problem of perfluorinated chemicals (PFCs) in the environment and their unknown health effects.  In order to gain this knowledge, it is essential to determine what types of PFCs are frequently used and the mechanisms by which an individual would be exposed to them. Here, we are measuring the presence or absence of 15 PFCs that are commonly associated with non-stick cookware, firefighting foam, and water-resistant materials.

This compiled list of PFCs is the basis of my research procedure. From here, I must learn how these compounds interact with biological components in organisms in order to understand their subsequent health effects. With that being said, the type of samples I am analyzing is a topic worth explaining. PFCs are known to be “proteinophilic” or, attracted to proteins in the bloodstream of organisms like humans and, in the case of my study, manatees. Therefore, I am using manatee plasma to test for the total individual burden of PFCs. 

PFAAs1       PFAAS2

Fig 1. 69 collection tubes containing manatee plasma samples (left). Aliquots of 22 samples of manatee plasma for future studies (right). Photos taken by me!

With 69 different plasma samples, I am performing a series of procedures that allow me to extract the PFCs. After completing multiple chemical processes (methodology proposed by Reiner et al., 2012), I am left with a liquid (containing the PFCs), measuring no more than 1 mL to be placed into a small vial. From here the vials are inserted into a liquid chromatography tandem mass spectrometer (LC-MS/MS), a machine that reads each of the 15 unique chemical structures of the outlined PFCs of interest and determines their abundance in each vial. This system isolates the concentration of each perfluorinated chemical for every one of the 69 manatee samples.

Mass Spec

Fig 2. The basic process a mass spectrometer performs in order to provide the concentration of chemicals being studied. Photo from: http://www.emdmillipore.com/US/en/water-purification/learning-centers/Anwendungen/organic-analysis/lc-ms/lWib.qB.vb4AAAFA5fIBvVBh,nav?ReferrerURL=https%3A%2F%2Fwww.google.com%2F&bd=1

The concentrations of these chemicals is the ultimate goal of my research study. This data will be compared to manatee location, morphometrics, body condition, sex, and more, in order to gain a better understanding of the overall PFC burden on these animals. These factors, or variables, may also provide insight into what may be influencing the burden intensity an individual may face. Once this knowledge is gathered, potential links to the health effects of PFC accumulation can be investigated in both manatees and humans.

I’d like to thank the National Science Foundation for funding this research opportunity and the College of Charleston’s Grice Marine Laboratory REU program for making this experience possible. A special thanks to the NIST team who has been teaching and supporting me throughout this process, specifically, Dr. Jessica Reiner, Jacqueline Bangma, and my mentor, Dr. John Bowden.

Note: These samples were collected as part of a health assessment of manatees by the USGS Sirenia Project. No manatees were harmed in the process of obtaining them.

References

Reiner, Jessica, Karen Phinney, and Jennifer Keller. “Determination of Perfluorinated Compounds in Human Plasma and Serum Standard Reference Materials Using Independent Analytical Methods.” Analytical & Bioanalytical Chemistry 401, no. 9 (January 15, 2012): 2899–2907. doi:10.1007/s00216-011-5380-x.z

Some Dramatic Microorganisms and Targeted Genetic Analysis

Emily Spiegel, Bryn Mawr College

IMG_4143

Genetic analysis has become the name of the game in many fields of biological research. Genes encode proteins, and in biology, proteins are king. Proteins guide biological pathways throughout the entire organism, so if you can track the genes, you can understand how the animal functions. Advances in technology like CRISPR, RNA sequencing, and PCR have improved the accessibility and accuracy of high-level genetic analysis in laboratories across the world. Some scientists utilize this technology to study the entire genome of an organism, while others attempt to understand the response of specific genes to various environmental factors or other external influences. This summer, I’m conducting an experiment focused on the latter. I’ll be studying how the polar algae species, Fragilariopsis cylindrus (affectionately known as Frag) copes with environmental stress by reproducing sexually. To do so, I’ll use targeted RNA sequencing to track genes related to sexual reproduction.

In order to understand how a Frag, responds to environmental stresses, you need a lot of algae. I reared nearly 100 liters of this algae in different artificial conditions. These conditions varied by two factors: photoperiod (the length of day and night), and nutrient levels. If you missed my previous post, “Stressing Out My Algae,” you should check it out for more details on the background for this experiment. We suspect that in conditions of stressful light energy (24 hours of continuous light), Frag will respond by reproducing sexually as opposed to its normal asexual mode of reproduction. This could possibly be a mechanism to rid itself of excess energy in times of stress, since sexual reproduction is more energetically expensive than asexual reproduction. By reproducing sexually, Frag may improve its chances of survival against this stress. Compounded with this is our hypothesis on nutrient deprivation. Previous experiments have shown that when a major nutrient, nitrogen, is limited, the algae cannot grow at full capacity and sexual reproduction is inhibited. We predict that when the stress of nitrogen limitation is combined with the stress of high light energy, we’ll see a reduction in the algae’s ability to survive in the stressful conditions due to the inhibition of sexual reproduction. So if we stress out the Frag enough and take away their ability to have sex, they’ll probably die. They’re some very dramatic microorganisms.

IMG_4131

24 bottles of algae were grown in six different experimental conditions varied by length of light exposure and nutrient levels. Algae was reared in 4-liter bottles filled with seawater.

So we grew our Frag, four bottles per six experimental conditions. Every day for eight days we extracted biomass from the bottle. From this sample we could test chlorophyll levels and cell counts, both of which give us a good idea of how well the algae in that bottle are growing in their conditions. We also took samples to be used for RNA extraction. Remember how genes encode proteins and proteins are king? Well before you can have your protein product, you need RNA. You’ve probably heard of DNA, which is the double stranded genetic cookbook. RNA is its single stranded offspring, which is then used as a the direct template to make proteins. A lot of genetic analysis therefore looks at RNA instead of DNA in order to understand how genes are being transcribed for protein production. We’re currently working on extracting the RNA from the original biomass sample and then running that pure RNA through a specialized machine called Nanostring. This is extremely targeted analysis, as Nanostring focuses in on the specific RNA we’re most interested in. In this case, we’re interested in RNA which is encoded from genes related to sexual reproduction. Using Nanostring will tell us how active the genes for sexual reproduction are in each bottle, which we can analyze to derive any correlation between our environmental stress factors and sexual reproduction.

If our hypothesis is correct, then we’ll see the greatest expression of sexual reproduction genes in the conditions of high light energy (24 hours of continuous light). We’d expect to also see low growth performance in nitrogen limited populations, indicated by low cell counts and chlorophyll levels. In these populations we predict we’ll see little if any expression of genes related to sexual reproduction. By the end, we’ll hopefully have a clearer picture of how phytoplankton like Frag deal with environmental stress.

Funding for this project is provided by the National Science Foundation in collaboration with the College of Charleston Grice Marine Laboratory and the National Oceanic and Atmospheric Administration. Acknowledgements to the entire lab of Dr. Ditullio and Dr. Lee in the Hollings Marine Laboratory facility.

Stressing Out My Algae

Emily Spiegel, Bryn Mawr College

Emily Carboy 170612

One intern’s perspective on lab work, South Carolina, and the coolest organisms in and out of water: phytoplankton.

 

The lab itself is large, packed to bursting with equipment, boxes, cabinets, monitors, and glassware. An antechamber acts as a sterile room for the most delicate of procedures, demanding precision and care. Many things reside in this room, but never quiet. The constant whirling of a machine’s fan, the hum of a freezer housing samples from a time beyond easy recollection, the typing of a research assistant hunched over innumerable data sheets…all these and more cut through the quiet throughout all hours of the day and night.

 

And at the heart of it all is the algae.

 

Small, marine microorganisms constituting a larger class known as phytoplankton, algae are the unsung heros of the environmental world. Energy, or the basic ability to do work, is the key to survival, growth, and reproduction. Without it you (and your genes) aren’t going anywhere. Algae harness the energy readily available from sunlight and convert it into a useable currency in a process known as primary production. This energy is then distributed to the many higher animals that eat them. They are the foundation of the marine food web and of the world’s energy supply, contributing to 45% of the planet’s primary production (Brierley 2017). In short, algae are cool.

So cool in fact, I’ve decided to spend my entire summer studying them. More specifically, I’ll be studying patterns of their reproduction and growth. A grad student running an experiment in this lab last year got unexpected results when she raised algae in 24 hours of continuous light instead of the normal 12 hours of light:12 hours of darkness she had followed previously.  Despite a limitation in the nitrogen added to these samples, which typically inhibits growth, the populations grown in 24 hours of light were able to grow successfully. So researchers went looking for answers.

One potential explanation is that the continuous light conditions caused the induction of sexual reproduction in the algae samples. Algae, like the rest of us, don’t like to be stressed. And being constantly exposed to light, which they automatically begin to utilize for primary production, is very stressful. It’s kind of like giving a kid a bunch of candy bars. A little is nice, a lot induces a sugar high and headaches for anyone within a 20m radius. The algae have too much energy and so they start to adjust their behavior to accommodate for the stressful conditions. One accommodation is sex. That’s right, stress out your algae and they might just turn on the Marvin Gaye and set the mood. Normally the species I’m studying (Fragilariopsis cylindrus, or just Frag for anyone without a PhD) reproduces asexually allowing high growth rates within the population. My lab is also curious as to whether low light conditions (a cycle of 6 hours of light and 18 hours of darkness) might be equally stressful to the algae and cause a similar response.

This is where I come in. This summer I’ll be exposing algae to conditions of varying light and nutrient stress in order to determine if stress actually does cause them to start reproducing sexually. Along the way, we’ll keep track of growth rates by measuring biomass, or the amount of live material within a sample. This can be measured by a variety of cool devices which tell me the number of cells in a particular volume of sample and the amount of chlorophyll being utilized in that sample. Chlorophyll is a component of the cycle of photosynthesis and is therefore a measure of the primary producers (i.e. the algae) in the sample. Eventually I’ll also run genetic analyses, tracking the utilization of genes involved in sexual reproduction as a way to determine if the algae are reproducing sexually instead of asexually.

All in all, it’s bound to be an interesting summer. Full of days at the beach, early mornings with a culture counter, and lots and lots of algae.

 

I’d like to acknowledge the entire DiTullio/Lee lab at the National Oceanographic and Atmospheric Administration as well as the National Science Foundation’s Research Experiences for Undergraduates program organized by the College of Charleston Grice Marine Laboratory. This project would not be possible without the support and guidance from these institutions and individuals. 

 

Works Cited

Brierley, Andrew. “Plankton.” Current Biology Magazine 27 (2017): 478-83.

Expect the Unexpected in Science

DSCN0046

Alessandra Jimenez, Whitworth University

As this internship has recently come to an end, I now begin to reflect on the wonderful yet challenging experience I had conducting observational research on Atlantic brown shrimp (Farfantepenaeus aztecus). In the last few weeks of this 10-week summer program, there was a fascinating yet unexpected turn of events. In particular, results of the experiment pointed to conclusions that I initially found myself unprepared for!

In summary, the focus of this experiment was to test effects of immune response on the ability to escape predators in shrimp. The escape mechanism, called tail-flipping (see video below) is actually powered anaerobically. However, recovery from this energetic behavior absolutely requires oxygen (is aerobic). As further explained in previous blog posts (click here and here), a recently discovered consequence of mounting an immune response against bacterial infection involves depression of aerobic metabolism. So, my mentor and I decided to focus on the recovery aspect (aerobic) of the escape response and predicted that this aerobic process would be impaired in shrimp injected with bacteria. At the same time, we predicted that the anaerobic part of this mechanism would be significantly impacted.

A slow-motion video of an Atlantic brown shrimp juvenile tail-flipping in an experimental tank (c) Alessandra Jimenez

The last few weeks of the internship mainly consisted of analysis, arriving at conclusions, and publicly reporting results. After testing tail-flipping ability (click here for an explanation of how this was tested) in a total of 42 shrimp juveniles, 30 of these were chosen for final analysis. Using a statistics software called Sigmaplot (version 12.5), I conducted tests that basically compared experimental groups based on the two variables I investigated: treatment type (bacteria or saline) and time given after injection (4 or 24 hours). Afterwards, results were deemed important based on significance values assigned by these Sigmaplot tests.

Significant results were very surprising!  Overall, results suggested that metabolic depression (indirectly caused by the immune response) did not have an impact on recovery (aerobic). At the same time, the most unexpected finding of all suggested that bacterial exposure actually increased anaerobic tail-flipping activity in Atlantic brown shrimp juveniles! Thus, this result called for a complete change in focus from the aerobic part to the anaerobic part of this particular escape response.

So, how could I possibly explain the increase in anaerobic processes found through this experiment? After much pondering and going through scientific literature, I formulated a new hypothesis. An important enzyme in crustaceans called arginine kinase is involved in the storage and creation of anaerobic energy that can be used for tail-flipping. Recent studies involved injecting bacteria into live crustacean tissue and comparing arginine kinase expression levels with controls. Results indicated a significant increase in expression in bacteria-injected tissue, especially in abdominal muscle (important for tail-flipping!). Based on these investigations, I now think that there may be a link between immune response and levels of anaerobic metabolism. Further research is required to explore this.

The final stages of the internship included creating and presenting a Powerpoint presentation of our work, and submitting a manuscript of my summer investigation. Overall, this REU internship experience has been challenging yet exciting, and has confirmed my love for marine biological research. As I mentioned at the end of my presentation, “expect the unexpected in science”.

powerpoint presentation - REU 2015

Picture of me right before giving my Powerpoint presentation (c) Alessandra Jimenez

References:

Burnett, L. E., Holman, J. D., Jorgensen, D. D., Ikerd, J. L., & Burnett, K. G. (2006). Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab. Biological Bulletin, 211(1), 50-57.

Gruschczyk, B., Kamp, G., 1990. The shift from glycogenolysis to glycogen resynthesis after escape swimming: studies on the abdominal muscle of the shrimp, Crangon crangon. J Comp Physiol B, 753-760.

Scholnick, D. A., Burnett, K. G., & Burnett, L. E. (2006). Impact of exposure to bacteria on metabolism in the penaeid shrimp Litopenaeus vannamei. Biological Bulletin, 211(1), 44-49.

Yao, C., Ji, P., Kong, P., Wang, Z., Xiang, J., 2009. Arginine kinase from Litopenaeus vannemai: Cloning, expression, and catalytic properties. Fish Shellfish Immunol 26, 553-558.

Many thanks to College of Charleston for hosting my project, Dr. Karen Burnett and Hollings Marine Laboratory for guidance and work space, and NSF for funding the REU program.

Unknown-4Unknown-5CofClogo

A day in the Shrimp Lab

DSCN0046

Alessandra Jimenez, Whitworth University

Have you ever wondered what it’s like to be a lab researcher who works with live animals? Through this internship, I am experiencing this firsthand in Hollings Marine Laboratory, along with all the responsibilities involved!

A normal workday in the life of a “shrimp intern” is like this: A big part of it is animal care and maintenance. It starts in the morning with a daily visit to the wet lab, where approximately 80 brown shrimp juveniles are kept in four large tanks with circulating water. After feeding them a round of commercial shrimp pellets, I test the salinity of the water in each tank using a refractometer to make sure that each tank has a certain salinity value: 30 parts per thousand, to be exact. I use dechlorinated freshwater and seawater to adjust this value if needed. Besides salinity, I also need to watch out for harmful levels of ammonia (it’s a part of shrimp waste!), nitrates, etc. In usual circumstances, I conduct a water change (replacing old water with new) once a week in order to dilute these chemicals. For the past couple of weeks, however, I have been conducting water changes daily in order to keep ammonia levels neutral in three tanks. Ah, the life of a caretaker of tons of baby shrimp!

20150627_125605

Wet lab. @AlessandraJimenez

Besides animal husbandry, I work on my experiment involving the effects of injection of bacteria on tail flipping (Want to learn more about what I’m doing? click here). I have two shrimp at a time in separate, well-aerated tanks, and they are both from the same treatment group. Shrimp are randomly assigned to one of four treatment groups. These treatment groups are designated according to the treatment type (injection of bacteria or saline) and according to the amount of time between the moment of injection and the tail-flipping procedure (4 or 24 hours). I randomly select two shrimps from the wet lab, weigh them, and keep them in the two experimental tanks overnight so they can get used to the new environment, temperature, etc. The next day, I take each shrimp out of the tank momentarily and quickly inject them with bacteria, or a saline buffer if they are part of the control group. Then, I give them 4 or 24 hours (depending on group type) to rest before conducting the actual tail-flipping experiment. Using a stir-rod (basically, a straight stick), I poke the shrimp lightly to induce tail-flipping, and count how many flips they perform before fatigue. The number of flips here is called ‘initial activity’. Then, I give them 20 minutes to recover in the tank before tail-flipping them again. The number of flips this time is called ‘recovery activity’.

20150621_145558

Experimental tanks @AlessandraJimenez

Why tail-flip them twice? Well, we hypothesize that recovery activity will be impaired in bacteria-injected shrimp versus the controls, while initial activity would probably not be. This is based on how recovery from tail-flipping activities involves aerobic (or oxygen-fueled) metabolism. Since bacteria accumulate in the gills of shrimp and block oxygen uptake (want to learn more? click here), it would make sense that recovery activity would be reduced. Stay tuned for results later on!

Works Cited:

Gruschczyk, B., Kamp, G., 1990. The shift from glycogenolysis to glycogen resynthesis after escape swimming: studies on the abdominal muscle of the shrimp, Crangon crangon. J Comp Physiol B, 753-760.

Scholnick, D. A., Burnett, K. G., & Burnett, L. E. (2006). Impact of exposure to bacteria on metabolism in the penaeid shrimp Litopenaeus vannamei. Biological Bulletin, 211(1), 44-49.

Many thanks to College of Charleston for hosting my project, Dr. Karen Burnett and Hollings Marine Laboratory for guidance and work space, and NSF for funding the REU program.

HMLnsf-logoCofClogo

Shrimp kabob, shrimp gumbo…shrimp sickness?

 

Alessandra Jimenez, Whitworth University

DSCN0046

Are you a fan of shrimp? You’re not the only one – billions of people around the world depend on shrimp fisheries and aquaculture for this wonderful source of food. Other predators in the sea rely on shrimp for their daily meals. Here’s the catch: shrimp may not last long enough to make it to your plate. Like us and other animals, crustaceans in general have to deal with so many obstacles that threaten their survival. One obstacle that is not often thought about is bacterial infection. Did you know that seawater is literally teeming with hundreds of millions of bacteria? The only way a shrimp can make it is by using its immune response – the “quick, potent, and effective” way of defending against a huge, microscopic army! Sounds like the perfect shield, right?

shrimp food

Shrimp is a common food source for many people. @Leslie Fink

Turns out that, like everything else in the science world, immunity comes at a big cost. It has been recently discovered that the immune response in crabs and shrimp against bacteria actually has a bad side effect: metabolic depression. In fact, the way the shrimp gets rid of bacteria in its bloodstream is by moving the bacteria to the gills, where it gets lodged and stays there for quite some time. The consequence? The lodged bacteria block blood flow through the gills, and the shrimp can’t get enough oxygen from the water. (Want to learn more? Click here)

Ouch, talk about a double whammy – fighting sickness plus oxygen blockage. One basic question comes to mind: can the shrimp still do what it needs to do while under such metabolic stress? This is where I come in. This summer, I am working under Dr. Karen Burnett in Hollings Marine Laboratory as an intern through the Research Experience for Undergraduates (REU) program in marine biology. We will be testing whether or not a shrimp’s immune response to a common bacteria affects its ability to perform daily activities. The activity of interest is called ‘tail-flipping’ (fancy name: caridoid escape reaction. Want to learn more? Click here)This really fast, reflex-like action needs to be in top shape for the shrimp to survive from predator attacks and to help it during feeding time.

Caridoid_escape_reaction

Also known as the ‘tail-flip’ reaction, this response is a shrimp’s primary means of escape. @Uwe Kils

The shrimp species of interest is Farfantepenaeus aztecus, or ‘Atlantic brown shrimp’. This fella is a familiar catch for fishermen throughout the Southeastern US and the Gulf of Mexico. This is the first time that a study like this is going to be done on a wild shrimp species in general, let alone this specific type!

Penaeus aztecus

Farfantepenaeus aztecus, aka ‘Atlantic brown shrimp’. @Virginia Living Museum

So, can an immune response impact tail-flipping in wild shrimp? If ‘yes’, would the potentially handicapped shrimp be able to survive in its natural environment? We will soon find out!

Happy shrimping!

Alessandra Jimenez

REFERENCES:

Burnett, L. E., Holman, J. D., Jorgensen, D. D., Ikerd, J. L., & Burnett, K. G. (2006). Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab. Biological Bulletin, 211(1), 50-57.

Fuhrman, J. A. (1999). Marine viruses and their biogeochemical and ecological effects. Nature, 399(6736), 541-548.

Latournerie, J.R., Gonzalez-Mora, I.D., Gomez-Aguirre, S.G., Estrada-Ortega, A.R., & Soto, L.A. (2011).                   Salinity, temperature, and seasonality effects on the metabolic rate of the brown shrimp Farfantepenaeus Aztecus (Ives, 1891) (Decapoda, Penaeidae) from the coastal Gulf of Mexico.Crustaceana 84(12-13), 1547-1560. doi: 10.1163/156854011X605738

Scholnick, D. A., Burnett, K. G., & Burnett, L. E. (2006). Impact of exposure to bacteria on metabolism in the penaeid shrimp Litopenaeus vannamei. Biological Bulletin, 211(1), 44-49.

Many thanks to College of Charleston for hosting my project, Dr. Karen Burnett and Hollings Marine Laboratory for guidance and work space, and NSF for funding the REU program.

HMLnsf-logoCofClogo