Some Dramatic Microorganisms and Targeted Genetic Analysis

Emily Spiegel, Bryn Mawr College


Genetic analysis has become the name of the game in many fields of biological research. Genes encode proteins, and in biology, proteins are king. Proteins guide biological pathways throughout the entire organism, so if you can track the genes, you can understand how the animal functions. Advances in technology like CRISPR, RNA sequencing, and PCR have improved the accessibility and accuracy of high-level genetic analysis in laboratories across the world. Some scientists utilize this technology to study the entire genome of an organism, while others attempt to understand the response of specific genes to various environmental factors or other external influences. This summer, I’m conducting an experiment focused on the latter. I’ll be studying how the polar algae species, Fragilariopsis cylindrus (affectionately known as Frag) copes with environmental stress by reproducing sexually. To do so, I’ll use targeted RNA sequencing to track genes related to sexual reproduction.

In order to understand how a Frag, responds to environmental stresses, you need a lot of algae. I reared nearly 100 liters of this algae in different artificial conditions. These conditions varied by two factors: photoperiod (the length of day and night), and nutrient levels. If you missed my previous post, “Stressing Out My Algae,” you should check it out for more details on the background for this experiment. We suspect that in conditions of stressful light energy (24 hours of continuous light), Frag will respond by reproducing sexually as opposed to its normal asexual mode of reproduction. This could possibly be a mechanism to rid itself of excess energy in times of stress, since sexual reproduction is more energetically expensive than asexual reproduction. By reproducing sexually, Frag may improve its chances of survival against this stress. Compounded with this is our hypothesis on nutrient deprivation. Previous experiments have shown that when a major nutrient, nitrogen, is limited, the algae cannot grow at full capacity and sexual reproduction is inhibited. We predict that when the stress of nitrogen limitation is combined with the stress of high light energy, we’ll see a reduction in the algae’s ability to survive in the stressful conditions due to the inhibition of sexual reproduction. So if we stress out the Frag enough and take away their ability to have sex, they’ll probably die. They’re some very dramatic microorganisms.


24 bottles of algae were grown in six different experimental conditions varied by length of light exposure and nutrient levels. Algae was reared in 4-liter bottles filled with seawater.

So we grew our Frag, four bottles per six experimental conditions. Every day for eight days we extracted biomass from the bottle. From this sample we could test chlorophyll levels and cell counts, both of which give us a good idea of how well the algae in that bottle are growing in their conditions. We also took samples to be used for RNA extraction. Remember how genes encode proteins and proteins are king? Well before you can have your protein product, you need RNA. You’ve probably heard of DNA, which is the double stranded genetic cookbook. RNA is its single stranded offspring, which is then used as a the direct template to make proteins. A lot of genetic analysis therefore looks at RNA instead of DNA in order to understand how genes are being transcribed for protein production. We’re currently working on extracting the RNA from the original biomass sample and then running that pure RNA through a specialized machine called Nanostring. This is extremely targeted analysis, as Nanostring focuses in on the specific RNA we’re most interested in. In this case, we’re interested in RNA which is encoded from genes related to sexual reproduction. Using Nanostring will tell us how active the genes for sexual reproduction are in each bottle, which we can analyze to derive any correlation between our environmental stress factors and sexual reproduction.

If our hypothesis is correct, then we’ll see the greatest expression of sexual reproduction genes in the conditions of high light energy (24 hours of continuous light). We’d expect to also see low growth performance in nitrogen limited populations, indicated by low cell counts and chlorophyll levels. In these populations we predict we’ll see little if any expression of genes related to sexual reproduction. By the end, we’ll hopefully have a clearer picture of how phytoplankton like Frag deal with environmental stress.

Funding for this project is provided by the National Science Foundation in collaboration with the College of Charleston Grice Marine Laboratory and the National Oceanic and Atmospheric Administration. Acknowledgements to the entire lab of Dr. Ditullio and Dr. Lee in the Hollings Marine Laboratory facility.

Are Manatees the Key?

Kady Palmer, Eckerd College


Contaminants. One word, countless different connotations. Therefore, the exposure to contaminants is a constant concern to both the public and the scientific community. The study I will be performing this summer focuses on perfluorinated chemicals, or PFCs. PFCs are a class of contaminants that are utilized in many commercially available products (ex: non-stick pans, stain resistant sprays, and water-resistant materials) and have been classified as highly abundant and persistent chemicals of concern, in relation to overall environmental and, subsequently, human health.


Photo from: “Should You Ban Your Teflon Pan? California.” Savvy California, January 1, 2015. 

Through various mechanisms, PFCs have been noted to integrate into the environment and end up in the air, soil, and water. As this is happening, the organisms living in these areas become exposed and are put into a precarious situation. Little research has been performed on examining exactly what the effect these compounds have on organisms in these types of environments. Although it would be just as interesting to scoop water samples from different places to determine a basis for this environmental change, my project will be delving a bit deeper. Because previous studies have shown data supporting PFC accumulation in the bloodstream of different marine animals and their subsequent health consequences, I will be expanding this research by analyzing the types and abundance of PFCs in the Florida manatee.

The Florida manatee (Trichechus manatus latirostris) inhabits areas of warm water, close to the shoreline. Unfortunately, manatees have a history of endangerment, as a result of human impacts (boat strikes, entanglements, drowning due to drainages) and environmental changes. Perfluorinated chemicals, as described above, could very well be impacting manatees in ways currently unknown. This study aims to isolate the types and abundance of PFCs in Florida manatees and potential health concerns associated with this exposure. While the health of manatees is undoubtedly important, the results of this research could provide insight as to the overall health of the ecosystems examined. Manatees could function as a model for other organisms, demonstrating the possible repurcussions of PFC exposure. If that is the case, the knowledge gained from this organism, living so close to the shoreline of human inhabited areas, may be applicable in aiding future human research.


Photo from: “West Indian Manatee.” Southeast Region of the U.S. Fish and Wildlife Service. Accessed June 23, 2017.

I’d like to sincerely thank everyone involved in the National Institute of Standards and Technology laboratories who have been a wealth of information and guidance, specifically Dr. Jessica Reiner, Jackie Bangma, and my mentor, Dr. John Bowden. This project would not be possible without samples and information provided by Robert Bonde with USGS, funding from the National Science Foundation, and the College of Charleston’s Grice Marine Laboratory.


Bangma, Jacqueline T., John A. Bowden, Arnold M. Brunell, Ian Christie, Brendan Finnell, Matthew P. Guillette, Martin Jones, et al. “Perfluorinated Alkyl Acids in Plasma of American Alligators (Alligator Mississippiensis) from Florida and South Carolina.” Environmental Toxicology and Chemistry, no. 4 (2017): 917. doi:10.1002/etc.3600.

“CDC – NBP – Biomonitoring Summaries – PFCs.” Accessed June 19, 2017.

West Indian Manatee”. Southeast Region of the U.S. Fish and Wildlife Service. Accessed June 23, 2017.

Exploring the “Secret Garden”

Christine Hart, Clemson University

Interim report picture

On a walk along the beach, have you ever noticed the garden growing at the water’s edge? During low tide patches of green and gold speckle the sand, growing what researchers have called a “Secret Garden.”

The “Secret Garden” is made up of a variety of microorganisms like cyanobacteria, flagellates, and diatoms. These small, sand-dwelling organisms are collectively known as benthic microalgae (BMA). BMA are responsible for 50% of primary production in estuary systems through photosynthesis and an extracellular polymeric secretion. Though small, these photosynthetic powerhouses form the basis of ocean food webs. BMA are also important indicators of ecosystem health. Scientists have documented the response of BMA to a variety of environmental conditions. As humans change natural estuary conditions, BMA will serve as a bioindicator for changes in ecosystem health.

The visible patches of green and gold at low tide indicate an increasing density—or biomass—of BMA. Currently, researchers do not know the mechanism for the visible change in BMA biomass. Our study will focus on two possible mechanisms of biomass change. One mechanism may be the vertical migration of BMA to the top of the sand.  The increase in biomass could also result from growth among BMA species due to sunlight exposure.

In addition to the unknown mechanism, the particular BMA species associated with the green and gold sheen have not been well studied. Like plants in a garden, BMA species are diverse and serve their own roles in maintaining a healthy environment. To better use BMA as a bioindicator, we will characterize the type of BMA contributing to the visible biomass changes.

Our study will focus on the mechanism of changes in biomass during low tide, while also identifying changes in the presence of BMA species. The results from the study will give us a greater understanding of the BMA that are essential to estuary systems. This information will establish a basis of BMA dynamics that can be used as an indicator of the health of estuaries.

This slideshow requires JavaScript.

Thank you to my mentor, Dr. Craig Plante, and my co-advisor, Kristina Hill-Spanik, for their support and guidance.  This project is funded through the National Science Foundation, and supported by The College of Charleston’s Grice Marine Laboratory.


Literature Cited

Lobo, E. A., Heinrich, C. G., Schuch, M., Wetzel, C. E., & Ector, L. (n.d.). Diatoms as Bioindicators in Rivers. In River Algae (pp. 245-271). Springer International Publishing. doi:10.1007/978-3-319-31984-.

MacIntyre, H.L., R.J. Geider, and D.C. Miller. 1996. Microphytobenthos: the ecological role of
 the “Secret Garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19: 186-201.

Plante, C.J., E. Frank, and P. Roth. 2011. Interacting effects of deposit feeding and tidal resuspension on benthic microalgal community structure and spatial patterns. Marine Ecology Progress Series 440: 53-65.

Rivera-Garcia, L.G., Hill-Spanik, K.M., Berthrong, S.T., and Plante, C. J. Tidal Stage Changes in Structure and Diversity of Intertidal Benthic Diatom Assemblages: A Case Study from Two Contrasting Charleston Harbor Flats. Estuaries and Coasts. In Review.

Underwood, G.J.C., and J. Kromkamp. 1999. Primary production by phytoplankton and 
microphytobenthos in estuaries. Advances in Ecological Research 29: 93-153.


Stressing Out My Algae

Emily Spiegel, Bryn Mawr College

Emily Carboy 170612

One intern’s perspective on lab work, South Carolina, and the coolest organisms in and out of water: phytoplankton.


The lab itself is large, packed to bursting with equipment, boxes, cabinets, monitors, and glassware. An antechamber acts as a sterile room for the most delicate of procedures, demanding precision and care. Many things reside in this room, but never quiet. The constant whirling of a machine’s fan, the hum of a freezer housing samples from a time beyond easy recollection, the typing of a research assistant hunched over innumerable data sheets…all these and more cut through the quiet throughout all hours of the day and night.


And at the heart of it all is the algae.


Small, marine microorganisms constituting a larger class known as phytoplankton, algae are the unsung heros of the environmental world. Energy, or the basic ability to do work, is the key to survival, growth, and reproduction. Without it you (and your genes) aren’t going anywhere. Algae harness the energy readily available from sunlight and convert it into a useable currency in a process known as primary production. This energy is then distributed to the many higher animals that eat them. They are the foundation of the marine food web and of the world’s energy supply, contributing to 45% of the planet’s primary production (Brierley 2017). In short, algae are cool.

So cool in fact, I’ve decided to spend my entire summer studying them. More specifically, I’ll be studying patterns of their reproduction and growth. A grad student running an experiment in this lab last year got unexpected results when she raised algae in 24 hours of continuous light instead of the normal 12 hours of light:12 hours of darkness she had followed previously.  Despite a limitation in the nitrogen added to these samples, which typically inhibits growth, the populations grown in 24 hours of light were able to grow successfully. So researchers went looking for answers.

One potential explanation is that the continuous light conditions caused the induction of sexual reproduction in the algae samples. Algae, like the rest of us, don’t like to be stressed. And being constantly exposed to light, which they automatically begin to utilize for primary production, is very stressful. It’s kind of like giving a kid a bunch of candy bars. A little is nice, a lot induces a sugar high and headaches for anyone within a 20m radius. The algae have too much energy and so they start to adjust their behavior to accommodate for the stressful conditions. One accommodation is sex. That’s right, stress out your algae and they might just turn on the Marvin Gaye and set the mood. Normally the species I’m studying (Fragilariopsis cylindrus, or just Frag for anyone without a PhD) reproduces asexually allowing high growth rates within the population. My lab is also curious as to whether low light conditions (a cycle of 6 hours of light and 18 hours of darkness) might be equally stressful to the algae and cause a similar response.

This is where I come in. This summer I’ll be exposing algae to conditions of varying light and nutrient stress in order to determine if stress actually does cause them to start reproducing sexually. Along the way, we’ll keep track of growth rates by measuring biomass, or the amount of live material within a sample. This can be measured by a variety of cool devices which tell me the number of cells in a particular volume of sample and the amount of chlorophyll being utilized in that sample. Chlorophyll is a component of the cycle of photosynthesis and is therefore a measure of the primary producers (i.e. the algae) in the sample. Eventually I’ll also run genetic analyses, tracking the utilization of genes involved in sexual reproduction as a way to determine if the algae are reproducing sexually instead of asexually.

All in all, it’s bound to be an interesting summer. Full of days at the beach, early mornings with a culture counter, and lots and lots of algae.


I’d like to acknowledge the entire DiTullio/Lee lab at the National Oceanographic and Atmospheric Administration as well as the National Science Foundation’s Research Experiences for Undergraduates program organized by the College of Charleston Grice Marine Laboratory. This project would not be possible without the support and guidance from these institutions and individuals. 


Works Cited

Brierley, Andrew. “Plankton.” Current Biology Magazine 27 (2017): 478-83.

Expect the Unexpected in Science


Alessandra Jimenez, Whitworth University

As this internship has recently come to an end, I now begin to reflect on the wonderful yet challenging experience I had conducting observational research on Atlantic brown shrimp (Farfantepenaeus aztecus). In the last few weeks of this 10-week summer program, there was a fascinating yet unexpected turn of events. In particular, results of the experiment pointed to conclusions that I initially found myself unprepared for!

In summary, the focus of this experiment was to test effects of immune response on the ability to escape predators in shrimp. The escape mechanism, called tail-flipping (see video below) is actually powered anaerobically. However, recovery from this energetic behavior absolutely requires oxygen (is aerobic). As further explained in previous blog posts (click here and here), a recently discovered consequence of mounting an immune response against bacterial infection involves depression of aerobic metabolism. So, my mentor and I decided to focus on the recovery aspect (aerobic) of the escape response and predicted that this aerobic process would be impaired in shrimp injected with bacteria. At the same time, we predicted that the anaerobic part of this mechanism would be significantly impacted.

A slow-motion video of an Atlantic brown shrimp juvenile tail-flipping in an experimental tank (c) Alessandra Jimenez

The last few weeks of the internship mainly consisted of analysis, arriving at conclusions, and publicly reporting results. After testing tail-flipping ability (click here for an explanation of how this was tested) in a total of 42 shrimp juveniles, 30 of these were chosen for final analysis. Using a statistics software called Sigmaplot (version 12.5), I conducted tests that basically compared experimental groups based on the two variables I investigated: treatment type (bacteria or saline) and time given after injection (4 or 24 hours). Afterwards, results were deemed important based on significance values assigned by these Sigmaplot tests.

Significant results were very surprising!  Overall, results suggested that metabolic depression (indirectly caused by the immune response) did not have an impact on recovery (aerobic). At the same time, the most unexpected finding of all suggested that bacterial exposure actually increased anaerobic tail-flipping activity in Atlantic brown shrimp juveniles! Thus, this result called for a complete change in focus from the aerobic part to the anaerobic part of this particular escape response.

So, how could I possibly explain the increase in anaerobic processes found through this experiment? After much pondering and going through scientific literature, I formulated a new hypothesis. An important enzyme in crustaceans called arginine kinase is involved in the storage and creation of anaerobic energy that can be used for tail-flipping. Recent studies involved injecting bacteria into live crustacean tissue and comparing arginine kinase expression levels with controls. Results indicated a significant increase in expression in bacteria-injected tissue, especially in abdominal muscle (important for tail-flipping!). Based on these investigations, I now think that there may be a link between immune response and levels of anaerobic metabolism. Further research is required to explore this.

The final stages of the internship included creating and presenting a Powerpoint presentation of our work, and submitting a manuscript of my summer investigation. Overall, this REU internship experience has been challenging yet exciting, and has confirmed my love for marine biological research. As I mentioned at the end of my presentation, “expect the unexpected in science”.

powerpoint presentation - REU 2015

Picture of me right before giving my Powerpoint presentation (c) Alessandra Jimenez


Burnett, L. E., Holman, J. D., Jorgensen, D. D., Ikerd, J. L., & Burnett, K. G. (2006). Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab. Biological Bulletin, 211(1), 50-57.

Gruschczyk, B., Kamp, G., 1990. The shift from glycogenolysis to glycogen resynthesis after escape swimming: studies on the abdominal muscle of the shrimp, Crangon crangon. J Comp Physiol B, 753-760.

Scholnick, D. A., Burnett, K. G., & Burnett, L. E. (2006). Impact of exposure to bacteria on metabolism in the penaeid shrimp Litopenaeus vannamei. Biological Bulletin, 211(1), 44-49.

Yao, C., Ji, P., Kong, P., Wang, Z., Xiang, J., 2009. Arginine kinase from Litopenaeus vannemai: Cloning, expression, and catalytic properties. Fish Shellfish Immunol 26, 553-558.

Many thanks to College of Charleston for hosting my project, Dr. Karen Burnett and Hollings Marine Laboratory for guidance and work space, and NSF for funding the REU program.


What’s living in the sand?

Jessie Lowry, Coker College


Visible microalgae seen on the surface of wet sand at Folly Beach.

Next time you go to the beach this summer, I want you to think about the sand that you are walking on. Did you know that there are tons of microscopic photosynthetic organisms, aka microalgae, that live on the surface of sand? Before this summer, I didn’t know about these organisms either. Here is a picture of visible microalgae on the surface of the sand. Look for this next time you’re at the beach!

Microalgae communities in sand are made up of single-celled eukaryotic algae and cyanobacteria living in the top several millimeters of the sand (Miller et al., 1996). These organisms play important roles in ecosystem productivity and food chain dynamics, as well as in sediment properties, such as erodibility (Miller et al., 1996).


Dr. Craig Plante and Jessie Lowry collect samples of sediment from Folly Beach. Photo credit: Kristy Hill-Spanik.

I am studying these microalgal communities and what factors influence community structure. For example, does pH, salinity, nutrients, or grain size shape microalgal community structure? Or does geographic distance shape communities? To answer these questions, I am collecting samples from Kiawah Island, Folly Beach, Isle of Palms, and Pawley’s Island, SC. We are measuring environmental variables at each location, and using molecular tools to study microalgal community structure.

I am extracting the DNA from samples collected, amplifying specific regions from these samples using polymerase chain reaction (PCR), and then we will be getting these regions sequenced using Ion Torrent technology. We will then use QIIME to determine how similar these benthic microalgal communities are.


Jessie Lowry preparing samples for PCR, or polymerase chain reaction, which is used to make millions of copies of a piece of DNA.

Diatoms, a group of microalgae, have been proposed as bioindicators of environmental health (Desrosiers et al., 2013). Bioindicators are really cool because instead of telling a snapshot of an environmental condition, such as pH, temperature, or amount of oxygen in an environment, biological indicators reflect those changes and can give an idea of how the ecosystem is being affected. This research will further our knowledge of what factors shape benthic microalgal communities, and give a better understanding of these organisms as a potential bioindicator. In addition, this research will add to knowledge about the distribution of microorganisms, which is also not fully understood.

Learn more:


Desrosiers, C., Leflaive, J., Eulin, A., Ten-Hage, L. (2013). Bioindicators in marine waters: benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecological Indicators, 32, 25-34.

Miller, D.C., Geider, R.J., MacIntyre, H.L. Microphytobethos: The ecological role of the “Secret Garden” of unvegetated, shallow-water marine habitats. Estuaries, 19(2A): 186-212.


Thank you so much to my mentors Dr. Craig Plante, and Kristy Hill-Spanik. This research is funded through the National Science Foundation and College of Charleston’s Grice Marine Lab.


Hook, Line and Sinker

Sierra Duca, Goucher College

Spotted seatrout, Cynoscion nebulosus, are important recreational fish that range from the Atlantic coast to the Gulf of Mexico. They are also good indicators of environmental changes in estuarine habitats since all of their life stages are found in estuaries1. To reiterate, I am studying muscle softness in spotted seatrout induced by the parasite Kudoa inornata. Several Kudoa species are notorious for causing this muscle softening, which makes the meat of the fish go bad faster than in uninfected fish2. This is an issue with fish that are consumed by people, such as the commercially important farmed Atlantic salmon2. seatrout for blogg

Fig 1. Spotted seatrout that were caught via trammel netting (PC: Sierra Duca).

First of all, to study this I need fish. While the mode of infection of Kudoa parasites is not well understood, it is presumed that wild spotted seatrout have a higher rate of infection of Kudoa inornata; therefore, I needed some wild spotted seatrout. In addition to the traditional hook and line approach of fishing for spotted seatrout, I was able to join a group at the South Carolina Department of Natural Resources (SCDNR) as they went trammel netting. In comparison to other nets, trammel nets have three layers of netting that vary in size in order to catch fish of various sizes. trammel net for blog

Fig 2. This illustration depicts the basic function and structure of a trammel net. A similar such device is used by the SCDNR to catalogue fish in specific sites over time in order to study the changing population dynamics of various fish species.

Once I have the fish I fillet, refrigerate, and take muscle biopsies at time points between 0-6 days, which is the most likely time that the fish would be consumed. I test the firmness of these muscle biopsies, as well as the parasite density. What I am trying to accomplish is to establish whether or not there is a link between parasite density and accelerated muscle softness (which causes the meat to go bad faster in infected fish), and if the rate of muscle softening changes over the course of 6 days. Ultimately the project will help increase our understanding of the effects of Kudoa inornata on the muscle of spotted seatrout. plasmodia for blog

Fig 3. This image (under 100x magnification) displays a plasmodium structure that contains a cluster of spores (known as myxospores) of Kudoa inornata in the muscle tissue of spotted seatrout. One way that I quantify parasite density is by looking at the average area of plasmodia. I can do this because generally larger plasmodia are found in the more infected fish  (PC: Sierra Duca).

Literature Cited 1Bortone SA (ed) 2003: Biology of the Spotted Seatrout. CRC Press. Boca Raton, FL, 328 pp 2Henning SS, Hoffman LC, Manley M (2013) A review of Kudoa-induced myoliquefaction of marine fish species in South Africa and other countries. S Afr J Sci. 109: 1-5

Photo Source (Fig 2): %2Bible%20and%20the%20Ancient%20Near%20East

Acknowledgments The Fort Johnson REU Program is funded by the National Science Foundation. This research is made possible through the mentorship of Dr. Eric McElroy and Dr. Isaure de Buron.  In addition, I would like to thank the College of Charleston and the South Carolina Department of Natural Resources for providing the help and facilities necessary for my project.