Invisible Neighbors: How Gracilaria Changes Bacterial Communities

Lilia Garcia, Illinois Wesleyan University

The Problem: It only takes a walk along the mudflats to notice large patches of wiry, red seaweed. The seaweed is called Gracilaria vermiculophylla, an invasive organisms that is native to East Asia (SERC, 2019)  The seaweed is hard to miss, but its effects on the ecosystem are not easily seen. This summer I will be studying how Gracilaria affects a bacterial community invisible to the naked eye.

Mudflat with Gracilaria, taken by L. Garcia

According to previous studies, Gracilaria is found to increase the amount of a bacteria called Vibrio (Gonzalez, et al., 2014). This may not mean much at first, since most of us don’t think about microscopic interactions. Bacteria, however, are important in maintaining the health of complex environments like estuaries. They cycle and break down nutrients and organic matter, influencing oxygen, carbon, and nitrogen levels. An increase in one group of bacteria, such as Vibrio, can change these patterns. And like most of us know, bacteria tends to spread easily. There are a few strains, or types, of Vibrio, such as V. vulnificus, V. parahaemolyticus, and V. cholera, that are dangerous to human health. An increase in these strains may cause an increase in disease from swimming or eating infected food.†

Vibrio growing on petri dish, taken by L. Garcia

We known Vibrio levels increase with Gracilaria, but we do not know how this happens. We also don’t know if all Vibrio strains increase together, or if only a few strains grow. To understanding the relationship between Gracilaria and Vibrio, I will record how much total Vibrio and how many strains of Vibrio grow in and away from patches of Gracilaria. In order to preserve its own health, Gracilaria produces compounds that promote or stop organisms from growing around it (Assaw et al., 2018). These are compounds I will test against different strains to study the mechanism Gracilaria uses affect specific Vibrio levels. I want to see how the growth of each strain is affected by different extracts. Will the strains further away from the Gracilaria be unable to grow when exposed to a certain type of extract? Will other strains grow better with the extract?

We tend to think about invasive species on a large scale, assessing the damage it causes to other familiar animals and plants. The ecosystem relies on tiny, cellular organism and studying how bacteria changes leads to a deeper understanding of environmental health. An invisible community is changing as Gracilaria flourishes, and there is a lot left to learn about it. 

Acknowledgements

Thank you to my mentor Dr. Erik Sotka, and our collaborator Dr. Erin Lipp. I would also like to thank Dr. Alan Strand and Kristy Hill-Spanik for their supporting guidance. Lastly, thank you to Dr. Loralyn Cozy (IWU) for preparing me to succeed in the lab. All research is funded by Grice Marine Lab and College of Charleston through the Fort Johnson REU Program, NSF DBI-1757899

References

Assaw S, Rosli N, Adilah N, Azmi M, Mazlan N, Ismail N. 2018. Antioxidant and Antibacterial Activities of Polysaccharides and Methanolic Crude Extracts of Local Edible Red Seaweed Gracilaria sp. Malays Appl Biol. 47(4): 135-144. 

Fofonoff PW, Ruiz GM, Steves B, Simkanin C, & Carlton JT. 2019. National Exotic Marine and Estuarine Species Information System. 

Gonzalez D, Gonzalez R, Froelich B, Oliver J, Noble R, McGlathery K. 2014. Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Mar Ecol Prog Ser. 505: 29-36.

Advertisements

The BMA of Today

Christine Hart, Clemson University

2017-06-22 10.29.36

In previous blog posts I described the sand-dwelling microalgae, also known as benthic microalgae (BMA), which are essential to estuary ecosystems. Not only do they produce the air we breathe and food we eat, they also inform us about the subtle changes that are occurring in our environment. Changes that otherwise may go unnoticed.

How do BMA show these environmental changes? By forming the foundation of estuarine energy, they provide a snapshot of how the estuary is functioning as a whole. If changes occur in BMA patterns, this may indicate changes in the overall ecosystem. BMA are also easily characterized and compared using modern molecular approaches. These qualities make BMA living indicators, or bioindicators, that are important in monitoring future ecosystem health.

BMA become visible in the upper layers of sediment at low tide. Later, they decrease in density—or biomass—as the tide rises. Our project studied the mechanism for the increase of biomass during low tide. Previous studies suggested that the mechanism for biomass increase is vertical migration of BMA from lower layers to upper layers of sediment. We also tested whether BMA growth due to high light exposure contributes to the biomass increase.

Our results indicated that both vertical migration and growth due to sunlight exposure were important to the increase in biomass. This is the first contribution to literature that recognizes a multifaceted approach to BMA biomass changes.

Additionally, we studied in how the biomass increase was connected to patterns in the type of BMA in Charleston Harbor. Previous studies suggested that increasing biomass was connected to changes in the abundance of BMA species; therefore, we expected to see the amount of certain BMA species change based on their exposure to migration and sunlight.

We were surprised by our findings. In this study, we found that BMA did not vary over short time periods (by tidal stage or by exposure to migration and sunlight). Instead, we found that BMA varied spatially and over a period of 6 years. In fact, only one of the dominant species of BMA remained the same from 2011 to 2017 (Figure 1).  The long-term change in community coincides with geological changes in the sampling site (Figure 2).

QualitativeLvM-MS

Figure 1. The relative abundance of each dominant BMA species from 2011 to 2017 is shown immediately after sediment exposure (T0) and 3 hours later (TF). Only one species—Halamphora coffeaeformis—remains dominant in 2017. This is evidence of a dramatic change in the dominant type of BMA in Grice Cove.

These are positive results for the use of BMA as bioindicators. If types of BMA are invariable over short periods of time, measurements of BMA will be more precise. Bioindicators must be capable of showing changes that are occurring on a larger environmental scale; therefore, it would be a good sign if the change in BMA community reflects the changing geological environment (Figure 2). Still, more studies on the temporal and spatial patterns of BMA communities should be conducted before BMA can be used as bioindicators.

Changes in Grice Cove

Figure 2. Aerial view of Grice Cove sampling site over time. The approximate location of the sampling site is shown by the white line. Sampling sandbar has changed over time, possibly contributing to community changes. Source: “Grice Cove” 32 degrees 44’58”N 79 degrees 53’45”W. Google Earth. January 2012 to March 2014. June 20, 2017.

This study contributed new information to the studies of BMA biomass during low tide, and showed that the BMA of today in Grice Cove are significantly different than in previous years.

 

Thank you to my mentor, Dr. Craig Plante, and my co-advisor, Kristina Hill-Spanik, for their support and guidance. This project is funded through the National Science Foundation and supported by College of Charleston’s Grice Marine Laboratory.

 

Literature Cited:

Holt, E. A. & Miller, S. W. (2010) Bioindicators: Using Organisms to Measure Environmental Impacts. Nature Education Knowledge 3(10):8.

Lobo, E. A., Heinrich, C. G., Schuch, M., Wetzel, C. E., & Ector, L. (n.d.). Diatoms as Bioindicators in Rivers. In River Algae (pp. 245-271). Springer International Publishing. doi:10.1007/978-3-319-31984-.

MacIntyre, H.L., R.J. Geider, and D.C. Miller. 1996. Microphytobenthos: the ecological role of
 the “Secret Garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186-201.

Rivera-Garcia, L.G., Hill-Spanik, K.M., Berthrong, S.T., and Plante, C. J. Tidal Stage Changes in Structure and Diversity of Intertidal Benthic Diatom Assemblages: A Case Study from Two Contrasting Charleston Harbor Flats. Estuaries and Coasts. In review.