RXR sequenced, now on to imposex

Samera Mulatu, Georgia Southern University

IMG-0640Findings: My experience at the Fort Johnson REU Program was phenomenal! Towards the end of the program, I was able to retrieve the RXR gene sequences for the Eastern mud snail. While working towards this goal, I was able to get a first hand glimpse of the long and hard steps and techniques taken to retrieve DNA sequences. From generating primers, doing dissections, extracting RNA, making cDNA, and even making PCR products, these listed skills are only just a short list of what I learned during this research experience. Retrieving the RXR gene sequences for the mud snail, was a trial and error process. Sequences were sent in at least five times, and four of those five times did not give good results. This was a big lesson for me, and reminded me that science is a trial and error process because all of it is a learning process.

Now that the RXR gene sequence for the Eastern mud snail was retrieved, the next steps in this project would be to use the sequences to place the mud snail in its proper spot on the phylogenetic tree. Also, now that the gene sequences are retrieved they will be used next fall by Edwina Mathis (a graduate at MUSC who’s doing her research in this topic) and Dr. Demetri Spyropoulos to induce imposex in the Eastern mud snail while exposing the snails to TBT, SPAN 80, and DOSS. Afterwards, they will measure changes in isoform expression.

The significance of the results from this study will hopefully show that mud snail imposex is a sensitive indicator of endocrine disrupting compounds in the environment which may impact human health and the health of other organisms in the ecosystem. This is because high imposex rates in mud snail species could possibly be linked to higher levels of contamination found in that site within the Charleston Harbor. Hopefully this study will further future research on EDCs and their effects on different species.

I would like to give a big thank to Dr. Demetri Spyropoulos for guiding me in my research. Also to the Fort Johnson REU Program, NSF DBI- 1757899, for providing me with the funds to complete this project.

Related research

Hotchkiss, A.K, A.G.Leblanc, R.M. Sternberg. 2002. Synchronized expression of Retinoid X Receptor mRNA with Reproductive Tract Recrudescence in an Imposex- Susceptible Mollusc. Environ. Sci Technol. 42: 1345- 1351.

Ravitchandirane, V. S, M.Thangaraj. 2013. Phylogenetic Status of Babylonia Zeylanica (Family Babyloniidae) Based on 18S rRNA GENE FRAGMENT.Annals of West University of Timisoara, ser. Biology. 1(2): 135- 140.

Barron- Vivanco, B.S, D. Dominguez- Ojeda, I.M. Medina- Diaz, A.E. Rojas- Garcia, M.L. Robledo- Marenco. 2014. Exposure to tributyltin chloride induces penis and vas deferns development and increases RXR expression in females of the purple snail (Plicopurpura pansa). Invertebrate Survival Journal. 11: 204-2012.

Horiguchi, T., M. Morita, T. Nishikawa, Y. Ohta, H. Shiraishi. 2007. Retinoid X Receptor gene expression and protein content in tissues of the rock shell Thais clavigeraAquatic Toxicology. 84: 379-388.

 

Advertisements

Stirring up the sediment, are we opening Pandora’s box?

Samera Mulatu, Georgia Southern University

IMG-0640

The Approach: Would you believe if I told you that animals in the Charleston harbor are changing from female to male?! This process, known as imposex, occurs in marine snails when females develop male sex traits because they are exposed to harmful chemicals. One of my main goals in this project is to measure the rates of imposex in the Eastern mud snail (Tritia obsoleta, previously known as Ilyanassa obsoleta) within the Charleston Harbor to see if these rates increase over time due to the dredging of the harbor. There is a plan to begin dredging the Harbor later this fall, and the idea is that dredging will bring harmful chemicals in the sediment up into the water column. The data I am collecting now will be the imposex rates of the mud snail before the dredging brings up any harmful chemicals buried in the sediment of the harbor. However, we aren’t just collecting a bunch of snails and waiting for them to change sexes! No, there’s so much more to it than that!

As mentioned in my previous post, disruption of the Retinoid X Receptor (RXR) gene pathway is known to be central to inducing imposex in mud snails. By studying RXR we could learn a lot about what chemicals and how much of them are needed to induce imposex. However, the RXR gene for Tritia obsoleta has never been sequenced! So the first task in this project was to find the most closely related snails to the mud snail whose RXR sequences were already known. Primers were then designed based on these related RXR genes of known species. After this, mud snails were collected from the Charleston Harbor. 50 mud snails were collected that had a shell size of greater than 12 mM in height (to ensure that we were only using adults). The mud snails were dissected, and from different dissected parts RNA was then extracted to retrieve messenger RNA (mRNA). The mRNA was then reverse transcribed with reverse transcriptase enzyme into cDNA (‘reverse’ because DNA is usually transcribed into mRNA). The cDNA library generated represents all of the mRNAs in the mud snail tissue. The cDNA was then PCR amplified using the RXR-specific primers described above. Once the PCR products were obtained, they were column purified and sent off for sequencing!

IMG-54671

I was preparing the primers for purification. Picture taken by: Cheldina Jean

Once the mud snail RXR sequences are retrieved, we will distinguish them into the two types of RXR gene forms, isoforms a and b. Designing new primers specific to these RXR isoforms, we can determine the relative abundance of each isoform based on chemical (i.e. TBT, DOSS, or SPAN 80) exposure in the lab using adult females. Hopefully, my results will contribute to a better understanding of what effect the dredging of the harbor will have on imposex rates of the mud snail. Furthermore, if we see that dredging is harmful to mud snails, it is probably not healthy for consumable seafood and people, as well. Something that may be considered when making future plans of dredging not only in the Charleston Harbor but other waterways as well.

IMG-5214

Extracting the RNA of the mud snails. Picture taken by Samera Mulatu

I would like to give a big thank to Dr. Demetri Spyropoulos for guiding me in my research. Also to the Fort Johnson REU Program, NSF DBI- 1757899, for providing me with the funds to complete this project.

Related research

Hotchkiss, A.K, A.G.Leblanc, R.M. Sternberg. 2002. Synchronized expression of Retinoid X Receptor mRNA with Reproductive Tract Recrudescence in an Imposex- Susceptible Mollusc. Environ. Sci Technol. 42: 1345- 1351.

Ravitchandirane, V. S, M.Thangaraj. 2013. Phylogenetic Status of Babylonia Zeylanica (Family Babyloniidae) Based on 18S rRNA GENE FRAGMENT.Annals of West University of Timisoara, ser. Biology. 1(2): 135- 140.

Barron- Vivanco, B.S, D. Dominguez- Ojeda, I.M. Medina- Diaz, A.E. Rojas- Garcia, M.L. Robledo- Marenco. 2014. Exposure to tributyltin chloride induces penis and vas deferns development and increases RXR expression in females of the purple snail (Plicopurpura pansa). Invertebrate Survival Journal. 11: 204-2012.

Horiguchi, T., M. Morita, T. Nishikawa, Y. Ohta, H. Shiraishi. 2007. Retinoid X Receptor gene expression and protein content in tissues of the rock shell Thais clavigeraAquatic Toxicology. 84: 379-388.

Journey to the Center of the Pluff

Lauren Rodgers, Rutgers University

Version 2The Approach: In my previous blog post I discussed the importance of iron in ocean ecosystems. Because so many living things rely on iron to live and grow, it is important for us to understand how iron cycles, as it enters the ocean, exits the ocean, and changes from one form to another. Zetaproteobacteria are marine bacteria that rely on iron to create energy for themselves, but in this process, they also turn dissolved iron into solid iron. So these bacteria make rust as they grow. Unfortunately, rust isn’t very good for other organisms, and the Zetaproteobacteria effectually remove iron from the ocean. But still, these organisms are one half of the iron cycle and therefore play an prominent role. With our research, we aim to determine whether these bacteria are present in Charleston’s estuaries, and extrapolate how they might be impacting the local iron cycle.

Now, you most likely have one thing on your mind: How are they going to study all of this!? From our lofty research aims, we must simplify those down to into bite sized goals so we can have a successful summer of sampling.

Our Goals:

  1. Identify whether Zetaproteobacteria can be found in the sediments around Charleston.
  2. Measure the amount of Fe(II) and Fe(III) in the sediments

The first thing that we did in order to accomplish these goals is pick sampling sites. We wanted to sample the sediments for these Zetaproteobacteria, so we chose muddy regions close to tidal rivers that empty into the ocean. We wanted tidal rivers because Zetaproteobacteria live in salty waters, and these rivers mix with salt water from the ocean. We decided to look for these muddy regions along the Ashley River, Wando River, Stono River, and Cooper River, picking easily accessible sites far up the river where the water is fresher, midway down the river where the salt content is at a mid-range, and low down on the rivers, near the ocean, where the water is salty.

 

After identifying the sites that we wanted to sample at, we needed to figure out how to sample. We wanted to sample the mud at different depths, so we decided to use syringes to suck up the mud.

 

Once all of the samples were collected it was time to get back into the lab to analyze the data. In order to confirm the presence of Zetaproteobacteria we conducted PCR, which is a process that tells us if there was any DNA belonging to the Zetaproteobacteria in the samples.

 

 

 

To analyze the iron a ferrozine assay was conducted. In a ferrozine assay, different chemicals are added to the samples, which then turn different shades of purple depending on how much iron is present in them.

 

While we have already completed a lot of the data collection, we still have more to do. In the next few weeks we will focus on collecting the last few samples and analyzing them in the lab. Soon all of the results will be ready for interpretation!


I would like to thank my mentor, Dr. Heather Fullerton, for guiding me through this research. I would also like to thank the National Science Foundation for funding this research as well as the College of Charleston and Grice Marine Lab for their support.