Is “Paraben-Free” the Way to Be?

Jaclyn Caruso, Salem State University

Me-WetLab Edit

In the wet lab, we wear a lei to remember to shut off the tank valve. Photo: Jaclyn Caruso, 2018.

The problem: Have you brushed your teeth today? Washed your hair? Put on deodorant, perfume, makeup, or lotion? If you (hopefully) have, you’ve used a cosmetic. According to the FDA, anything that is applied to your body with the intention of cleansing or beautifying it is a cosmetic (FDA, 2018). Because this category covers such a wide variety of products, it’s easy to imagine just how many are used worldwide on a daily basis.

Like anything people use, cosmetics are eventually washed off, and often end up in the ocean from sewage drains and wastewater treatment plants. The problem with this pollution is that cosmetics contain preservatives. Although these components prevent the growth of bacteria and mold, their actions when introduced to natural systems are not tested at great lengths when considering their frequent use. Until a few years ago, the most common preservatives were a group of chemicals called parabens.

But, you’ve probably heard of at least one product that claims to be “paraben-free.” This aversion to parabens followed a landmark study in 2004 which showed that parabens have the potential to accumulate in human breast tumors (Darbre et al., 2004). The authors explicitly stated that the source of the parabens (methylparaben, mainly) was unknown, but many people were shaken by the findings. Cosmetics manufacturers began changing their formulations by using newer, “safer” preservatives like 2-phenoxyethanol and chlorphenesin (Bressy et al., 2016). However, these alternative preservatives have not been extensively tested for their effects on marine animals, which may be at risk when these chemicals enter the ocean.

Me with Urchin

Collecting sea urchins at Breach Inlet! Photo: Dr. Podolsky, 2018.

My research this summer aims to explore the effects that these alternative preservatives have on marine animal development. We will use the local sea urchin Arbacia punctulata as a model, because it is easily collected in the wild and reared in the lab. Like many marine animals, A. punctulata is a broadcast spawner—males and females release their sperm and eggs into the water column. After fertilization, the embryos develop into free-floating larvae, which are highly sensitive to pollutants.

We will expose the sea urchin larvae to various concentrations of each chemical to test whether larval development is affected negatively by the chemicals. Such negative effects could inhibit the ability of sea urchins to develop properly, leading to death or inability to mature to adulthood. If we see effects in sea urchins, there is a possibility of similar effects in other species that may be more directly important to humans, like fish and crustaceans.

Our ultimate goal is to explore whether products that are safer for people are safer for the marine environment. If they are—great! If not, we need to think critically about the products we use that end up in the ocean, because human and ocean health are inextricably linked. Healthy oceans, for example, provide us with food, medications, recreation, and more (NOAA, 2018).

Blog 1 Photo

Left: A beautiful specimen of Arbacia punctulata. Scale bar = 1 cm. Right: Dr. Podolsky demonstrating how to induce spawning in sea urchins using a low voltage across the gonopores. Photos: Jaclyn Caruso, 2018.



Thank you to Dr. Bob Podolsky (CofC) for his mentorship and endless patience, Dr. Cheryl Woodley (NOAA) for graciously offering her procedures and resources, and Pete Meier (CofC) for teaching me the ropes of setting up aquaria. This project is supported by the Fort Johnson REU Program, NSF DBI-1757899.


Bressy, A. et al. (2016) ‘Cosmet’eau—Changes in the personal care product consumptionpractices: from whistle-blowers to impacts on aquatic environments’, Environmental Science and Pollution Research. Environmental Science and Pollution Research, 23(13), pp. 13581–13584. doi: 10.1007/s11356-016-6794-y.

Darbre, P. D. et al. (2004) ‘Concentrations of Parabens in human breast tumours’, Journal of Applied Toxicology, 24(1), pp. 5–13. doi: 10.1002/jat.958.

FDA (U.S. Food & Drug Administration) (2018) ‘Is It a Cosmetic, a Drug, or Both? (Or Is It Soap?)’ (accessed Jul. 2, 2018).

NOAA (National Oceanic and Atmospheric Administration) (2018) ‘What does the ocean have to do with human health?’ (accessed Jul. 2, 2018).


Humans and gators and chickens, oh my!

Jimena B. Pérez-Viscasillas, University of Puerto Rico at Mayaguez


When I first applied to this Marine Biology REU, in a lab that works mostly with alligators, at a Marine Science Campus right by the Charleston shore, I never thought I’d end up working with chickens. Yes, you read correctly: chickens, of the Chick-Fill-A and Kentucky Fried sort. I was surprised too, naturally, but it turns out the reason behind it is actually pretty important.

A couple of years ago, a group of scientists noticed some alligator populations in Florida weren’t doing too well. Their fertility levels were decreasing and a lower percentage of the eggs laid were hatching. Upon further study, evidence pointed towards a likely culprit: anthropogenic chemical contaminants in the environment. These contaminants were negatively affecting the gators’ hormone production and, in turn, their reproductive systems.

What do these gators have to do with chickens, though? Perhaps more importantly, what do they have to do with us? Let’s review some basic bio…

Figure 1: Vertebrate phylogenetic tree. Amniotes are organisms which have adapted to terrestrial reproduction. This group includes birds, reptiles, and mammals. (Graphic taken from: UCL)

There are some terrestrial animals which lay eggs (like chickens and gators) and some that carry their young in the womb, inside the placenta (like us). Both types of organisms, collectively called amniotes, have much of the same tissues surrounding their embryos during development. This shared characteristic means that we may be able to study some egg-laying animals to better understand our own reproductive systems.

Figure 2: A chick embryo and membrane. The membrane I’m going to be studying is that which lines the inside of the shell. Its called the chorioallantoic membrane, and it allows gas and waste exchange between the embryo and the environment. (Taken from Angiogenesis Laboratory Amsterdam)

Before we can use these organisms’ tissues as models of our own, however, we have to make sure we understand how they function. This is where I (and the chickens) come in. This summer, I’m going to be measuring how (and if), at different stages of development, the egg membrane of chickens produces hormones called prostaglandins. Prostaglandins play a major role in the immune system, as well as the body’s general regulation and reproduction. This preliminary research would help us better understand these sentinel species and allow us to later assess how their endocrine, immune and reproductive systems are being compromised by environmental pollutants. If we know how chemical contaminants in the environment are having negative effects on their reproduction, what might it tell us about how they’re affecting our health and reproduction?

To learn more about my project, check back for further posts!


This research, conducted at Dr. Louis Guillete’s MUSC Laboratory, is made possible thanks to funding from NSF and the College of Charleston. Further equipment and facilities are provided by the Hollings Marine Laboratory.



Bellairs, Ruth & Osmond, Mark. The Atlas of Chick Development.  San Diego, California: Elsevier Academic Press, 2005. Print.

Guillette LJ Jr. “The evolution of viviparity in amniote vertebrates—new insights, new questions.” J Zool  223 (1991): 521–526. Web. 10 June 2015.

Guillette LJ Jr. “The evolution of viviparity in lizards.” Bioscience 43 (1993): 742–751. Print.

Kalinski P. “Regulation of Immune Responses by Prostaglandin E2.” J Immunol 188 (2012):21-28. Web. 10 June 2015.

Kluge AG. Chordate Structure and Function. New York: Macmillan Publishing Co., Inc.; 1977. Print.

Milnes MR, Guillette LJ Jr. “Alligator Tales: New Lessons about Environmental Contaminants from a Sentinel Species.” BioScience 58.11 (2008): 1027-1036. Web. 15 June 2015.  doi:10.1641/B581106